Raining on the Sidewalk

- A given square of sidewalk is 1 yard square
- It starts to rain, let's say that for every square foot, an average of 10 rain drops fall per second. Thus, 90 raindrops fall on this square per second. When a raindrop falls, it is equally likely to fall anywhere on the square.

Questions

- For any given square inch, what is the probability that it will still be dry after 30 second?
- For any given square inch, what is the expected number of seconds until a raindrop hits it?
- These are answered on the next two slides. Try to answer them yourselves first.

Dry sq. inch after 30 sec

- How many square inches are there in the square yard? 36X36 = 1296
- For a drop of water, the probability that it hits any given square inch is $1 / 1296$
- So the probability that it DOESN'T hit a square inch is 1295/1296
- In 30 seconds there are $90 \times 30=2700$ drops
- The Probability that all 2700 drops miss this sq. inch is $(1295 / 1296)^{\wedge} 2700=.1244$, about 12.44%

Expected seconds until a drop

- We can figure out the probability that a square inch gets wet during any second, it is 1-P(it stays dry)
This is $1-(1295 / 1296)^{\wedge} 90=.06711$
- This question is asking for $E(X)$ for a geometric X with $\mathrm{p}=.06711$, the Expected Value is $1 / \mathrm{p}=1 / .0671=14.901$
- So on average, any given square inch will get its first drop at 14.9 seconds

